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We present a plot-level tool to predict photosynthetic parameters and pigment contents with 20 

PLSR analysis of sunlit leaf reflectance pixels to offer high thoughput field screening for 21 

improved photosynthetic performance. 22 
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Abstract 26 

Photosynthesis is currently measured using time laborious and/or destructive methods 27 

which slows research and breeding efforts to identify crop germplasm with higher photosynthetic 28 

capacities. We present a plot level screening tool for quantification of photosynthetic parameters 29 

and pigment contents that utilizes hyperspectral reflectance from sunlit leaf pixels collected from 30 

a plot (~2mx2m) in less than one minute. Using field grown Nicotiana tabacum with genetically 31 

altered photosynthetic pathways over two growing seasons (2017 and 2018), we built predictive 32 

models for eight photosynthetic parameters and pigment traits. Using partial least squares 33 

regression (PLSR) analysis of plot-level sunlit vegetative reflectance pixels from a single VNIR 34 

(400-900nm) hyperspectral camera, we predict maximum carboxylation rate of Rubisco (Vc,max , 35 

R2 =0.79) maximum electron transport rate in given conditions (J1800 , R2 = 0.59), maximal light 36 

saturated photosynthesis (Pmax ,  R2 = 0.54), chlorophyll content (Chl,  R2 = 0.87), the ratio of 37 

chlorophyll a to b (Chl a:b,  R2 = 0.63), carbon content (C,  R2 = 0.47) and nitrogen content (N,  38 

R2 = 0.49). Model predictions did not improve when using two cameras spanning 400-1800nm 39 

suggesting a robust, widely applicable and more ‘cost-effective’ pipeline requiring only a single 40 

VNIR camera. The analysis pipeline and methods can be used in any cropping system with 41 

modified species specific PLSR analysis to offer a high throughput field phenotyping screening 42 

for germplasm with improved photosynthetic performance in field trials. 43 
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Abbreviations 48 

C – Carbon content (%) 49 

EVI – enhanced vegetation index 50 

GPP – gross primary productivity 51 

J1800 – maximum electron transport rate at 1800 µmol m-2 s-1 PAR 52 

Jmax - maximum electron transport rate 53 

N – Nitrogen content (%) 54 
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NDVI – normalized difference vegetation index 55 

NIR - near infra-red electromagnetic energy 56 

ɸCO2 – quantum yield of carbon fixation 57 

PLSR – partial least squares regression 58 

Pmax- maximum light saturated photosynthetic rate 59 

SIF – solar induced fluorescence 60 

SWIR - shortwave infra-red electromagnetic energy 61 

Vc,max – maximum carboxylation rate of Rubisco 62 

VIP – variable importance projection 63 

VIS – visible electromagnetic energy 64 

VNIR - visible near infra-red electromagnetic energy 65 

 66 

Introduction  67 

Projected population increase and pressures on land and agricultural resource availability 68 

induced by a changing global climate is placing increased demand to secure global food supply 69 

in coming decades (Foley et al., 2011; Tilman et al., 2009). Improving photosynthetic capacity 70 

has become a target to enable crop yield increase (Evans, 2013; Zhu et al., 2010; Long et al., 71 

2006; Monteith and Moss, 1977). Inefficiencies in the photosynthetic pathway have inspired 72 

research efforts to exploit natural variation in photosynthetic capacity (Lawson et al., 2012), and 73 

to improve photosynthetic pathways transgenically (Ort et al., 2015). Thus, crop scientists and 74 

breeders face the challenge of characterizing genetic improvements in field trials in a high 75 

throughput manner as a screening tool to identify ‘photosynthetically superior’ germplasm 76 

(Furbank and Tester, 2011). While photosynthetic capacity has been successfully estimated from 77 

hyperspectral imaging at the ecosystem scale (Serbin et al., 2015) it is often too coarse in spatial 78 

resolution to discriminate in mixed germplasm field trails. Where hyperspectral analysis has 79 

predicted leaf-level photosynthetic capacities and pigment contents (Ainsworth et al., 2014; 80 

Serbin et al., 2012; Silva-Perez et al., 2017; Yendrek et al., 2016) it holds limitation as leaf clip 81 

measurements only pinpoint a few individual leaves in a plot canopy.  Currently there are limited 82 

tools to screen a whole plot, rather than individual leaves, for photosynthetic performance. Plot 83 

level estimations with proximal sensing platforms are needed to allow rapid capture of 84 
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reflectance from all sunlit vegetation in sensor range, eliminating the need to make assumptions 85 

about plot performance based on leaf-level samples, and expanding the spatial and temporal 86 

capabilities of analysis to capture hundreds of plots in a single day. 87 

The maximum carboxylation rate of Rubisco (Vc,max) and maximum electron transport 88 

rate in given conditions (Jmax) are widely used as determinants of photosynthetic capacity for the 89 

carbon reduction cycle and the electron transport chain respectively (Caemmerer and Farquhar, 90 

1981; von Caemmerer, 2000) and are traditionally derived at the leaf level with infra-red gas 91 

exchange analysis. The response of leaf-level CO2 assimilation to incrementing CO2 is measured 92 

(Long and Bernacchi, 2003) and analyzed (Sharkey et al, 2007) according to the mechanistic 93 

model of photosynthesis (Farquhar et al. 1980). The quantum yield of CO2 fixation (фCO2) and 94 

maximum light saturated photosynthetic rates (Pmax) are also used as determinants of 95 

photosynthetic operating efficiency, as derived from leaf-level gas exchange measurements of 96 

the response of CO2 assimilation to incrementing photosynthetically active radiance (PAR) 97 

(Ögren and Evans, 1993). Due to the wealth of physiological information provided, leaf level gas 98 

exchange has dominated retrieval of these photosynthetic parameters for decades, but it is limited 99 

and time restrictive for the sampling required to measure large crop trials. Additionally, 100 

upscaling from leaf gas exchange to determine plot or canopy photosynthetic capacity from gas 101 

exchange often requires complex modeling with many assumptions (De Pury and Farquhar, 102 

1997; de Wit, 1965; Evans and Farquhar, 1991; Wu et al., 2019; Yin and Struik, 2017). 103 

Recently, advances have been made in quantifying photosynthesis from spectral analysis 104 

at the leaf to ecosystem scales. At the leaf level, with a hand held spectral leaf gun 105 

photosynthetic capacity (Vc,max and Jmax) and Chlorophyll (Chl), Carbon (C) and Nitrogen (N) 106 

content have been predicted successfully from hand-held reflectance spectroscopy across the full 107 

electromagnetic spectrum (400-2500nm) for tree species (Serbin et al., 2012; Serbin et al., 2014), 108 

productive cropping systems (Ainsworth et al., 2014; Ely et al., 2019; Silva-Perez et al., 2017; 109 

Yendrek et al., 2016), and in field trials of N. tabacum with altered photosynthetic pathways (Fu 110 

et al., 2019; Meacham-Hensold et al., 2019). Partial least squares regression (PLSR) analysis of 111 

reflectance spectra has also been applied to predict photosynthetic capacity with airborne 112 

hyperspectral imaging at the agroecosystem canopy scale (Serbin et al., 2015), however, the 113 

most advanced systems satellite hyperpspectral systems capture around 1 pixel per 10-30m 114 
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(Transon et al. 2018), which is too coarse in spatial resolution to identify genotypic variation 115 

within field trials of many small plots. Advanced UAV systems are able to capture greater spatial 116 

resolution (~40cm per pixel) (Ruwaimana et al., 2018, Zarco-Tejeda et al., 2013) but still fall 117 

short of the millimeter resolution required to build models to predict photosynthetic capacities at 118 

the scale of  individual leaves in small plots. While multispectral cameras are widely available at 119 

higher resolution and used to derive plot level spectral vegetation indices (SVI’s) from discreet 120 

spectral wavelengths (Curran et al., 1990; Gamon et al., 1992; Haboudane et al., 2004; 121 

Thenkabail et al., 2000; Zarco-Tejada et al., 2002), SVI’s are not able to determine 122 

photosynthetic parameters beyond structural inference on physiological processes from discreet 123 

spectral bands. Satellite mounted multi-spectral imaging systems have also been widely 124 

exploited to derive spectral indices such as the enhanced vegetation index (EVI) and normalized 125 

difference vegetation index (NDVI), and more recently solar-induced fluorescence (SIF) (Guan 126 

et al., 2016; Guanter et al., 2014; Porcar-Castell et al., 2014) and linked to ecosytem gross 127 

primary productivity (GPP) (Barnes et al., 2017; He et al., 2019; Rahman et al., 2005; Shi et al., 128 

2017; Smith et al., 2002; Wylie et al., 2003; Zhang et al., 2014; Zhang et al., 2018). Multi 129 

spectral SVI and SIF estimates have been incorporated into terrestrial biosphere models to 130 

predict photosynthetic capacities at the ecosystem scale (Demarty et al., 2007; Kattge et al., 131 

2009; Zhang et al., 2014), but have not been used to predict photosynthetic capacity in smaller 132 

scale plot trials.  133 

Resolving hyperspectral analysis of photosynthetic parameters at the plot level holds 134 

many practical and technical challenges. First, hyperspectral cameras and sensors that capture 135 

reflectance at the spatial and spectral resolution required for plot level analysis are often limiting 136 

in terms of availability, affordability and suitability for field trial scanning. Second, field 137 

phenotyping proximal sensing platforms (Deery et al., 2014) to house such sensors are not 138 

currently commercially available and need to be fabricated for purpose. Third, hyperspectral 139 

imaging systems generate memory intensive three dimensional datasets with two spatial 140 

dimensions (Sx and Sy) and one spectral (Sλ) forming ‘hypercubes’ (Bannon, 2009), necessitating 141 

advanced data storage systems and custom analysis pipelines. Fourth, at the plot level, plant 142 

geometrical structure, leaf scattering properties, background soil and dynamic environmental 143 

conditions (Gao et al., 2000; Jay et al., 2016; Verhoef, 1984; Vogelman et al., 1996) need to be 144 

resolved against leaf-level ‘ground truth’ measurements to accurately infer photosynthetic 145 
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performance upscaled from leaf to plot level. And finally, ensuring use of this technology relates 146 

to important physiological questions requires effective interdisciplinary collaboration between 147 

engineering, computational and biological specialists.  148 

In this study, we present a plot level high throughput phenotyping platform housing two 149 

hyperspectral cameras. One VNIR camera captured reflectance from 400-900nm spectral 150 

resolution 2.1nm and the second NIR/SWIR camera from 900-1800nm (spectral resolution 151 

4.9nm). We created an automated hyperspectral imaging processing pipeline that extracts plot 152 

level sunlit vegetation pixel reflectance spectrum to predict Vc,max, J1800, Chl, Chl a:b, C, N, Pmax 153 

and фCO2. From partial least squares regression (PLSR) analysis of plot-level reflectance spectra 154 

from hyperspectral images, we predict these photosynthetic traits in field trials of wild-type and 155 

genetically modified lines of N. tabacum. We assess the contribution of spectral regions and the 156 

applicability of this technique to the field phenotyping community and offer a tool for high 157 

throughput phenotyping of large-scale crop trials to facilitate screening for increasing crop 158 

yields.  159 

 160 

 161 

Methods 162 

Data from two growing seasons (2017 and 2018) were used in this study, presented in 163 

two performance tests. For performance test 1, three wild type and seven transgenic N. tabacum 164 

lines were measured over 2017 and 2018 growing seasons (Table 1). Measurements in 2017 165 

were taken from June 22nd – August 1st and in 2018 on July 24th and 25th. For performance test 2, 166 

two wild type and eight transgenic N. tabacum were measured in 2018 on July 26, 27 and 28th,. 167 

In performance test 1, predictive models were built from hyperspectral reflectance (both leaf and 168 

plot-level) with ground truth data from gas exchange measurement of CO2 response curves for 169 

Vc,max and J1800, and leaf pigment extractions for chlorophyll content (Chl), chlorophyll a:b (Chl 170 

a:b), Carbon content (C) and Nitrogen content (N). For performance test 2, predictive models for 171 

plot and leaf-level Pmax and фCO2 were trained with ground truth data from gas exchange 172 

measurement of light response curves. 173 

 174 
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Plant material 175 

In 2017, three wild type N. tabacum cultivars and six transgenically modified lines 176 

(described in detail in Table 1) were grown at the University of Illinois Energy Farm Facility in 177 

Urbana, Illinois (40°03'46.4"N 88°12'25.4"W, 215 m above sea level). All experiments consisted 178 

of four replicated plots of each genotype arranged in a 6 × 6 grid and spaced 0.38 m apart with 179 

36 plants per plot. Each plot measured approx. 2x2 meters. All transgenic material is expressed 180 

in the Petite Havana background, with the exception of the Rubisco antisense lines in the W38 181 

background. Seedlings were germinated in greenhouse conditions in float trays using a coir soil 182 

mix (Coco loco) maintained daily at 150ppm N using a 20-20-20 general purpose water soluble 183 

fertilizer. Plants were and transplanted to the field at the four-leaf stage. High levels of ESN 184 

Smart Nitrogen (310 kg/ha, ~150ppm soil concentration) were applied to the field site two weeks 185 

prior to transplanting. A broad action herbicide, Glyphosate-isopropylammonium (41%) 186 

(Killzall; VPG) (15 l at 70g/l) was applied once to all plots two days prior to transplanting. A 187 

biological pesticide Bacillus thuringiensis v. kurstaki (54%) (DiPel PRO), was applied to the 188 

prepared field site five days prior to transplant and at biweekly intervals thereafter to control for 189 

tobacco pests. Irrigation was provided to all plots as needed to eliminate water limitation 190 

throughout growth.  191 

In 2018, two wild type, four previously grown transgenic lines, and four newly added 192 

transgenic lines (described in detail in Table 1) were grown according to the same protocol as 193 

2017. All transgenic plant material was homozygous with the exception of single Rubisco 194 

antisense and decreased PsbS line (4-KO). Single Rubisco antisense plants were planted to the 195 

field without screening. 4-KO seedlings were screened 8 days post emergence with chlorophyll 196 

fluorescence imaging to identify and select only plants with the PsbS knockout phenotype for 197 

low non-photochemical quenching (NPQ). 198 

Hyperspectral image collection 199 

 A ground-based field phenotyping platform was built to house two hyperspectral push-200 

broom cameras mounted on a horizontal beam (Fig 1A). The first hyperspectral imaging camera 201 

(PIKA II: Resonon, Inc., Bozeman, MT, USA) captured spectral radiation from 400 to 900 nm in 202 

2.1 nm contiguous bands (240 spectral bands total) with 640 spatial channels. The second camera 203 

(PIKA NIR: Resonon, Inc.) recorded spectral radiation from 900 to 1800 nm in 4.9 nm 204 

contiguous bands (164 spectral bands) with 320 spatial channels. Both cameras were mounted at 205 
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a height of 1.6 m from soil and were triggered simultaneously above a plot to acquire two images 206 

during a ~30s scan. Images were captured in high irradiance conditions during a 3hr window 207 

around solar noon and stored using SpectrononPro software (Resonon, Inc.). A 99% reflective 208 

white Teflon panel was mounted horizontally and level with the top of the plant canopy and 209 

captured in the field of view for each image (Fig. 1B). Images were captured and stored in raw 210 

data mode. The cameras were calibrated to remove electrical and dark current daily prior to data 211 

acquisition. Camera integration time was set at 20% below saturation point according to the 212 

radiance signal from the Teflon panel before each scan to avoid saturation.  213 

 214 

Hyperspectral image analysis pipeline 215 

An automated image analysis pipeline was created using Python (Python Software 216 

Foundation, https://www.python.org/), to extract spectral reflectance from images acquired in 217 

raw data mode (Fig 2B). Data from each camera went through the same three phases of 218 

processing: first, conversion of raw data in digital numbers to radiance using radiometric 219 

calibration, second, the classification of pixels (Fig. 2B) and third, conversion of radiance pixels 220 

to reflectance (Fig 2C). For the first phase, raw data were converted to absolute radiance using 221 

radiometric calibration files from the camera manufacturer. In the second phase, the image was 222 

segregated to represent 6 matter classifications using K-means clustering (Spath, 1985) which 223 

separated pixels of interest (sunlit leaves and Teflon) from shaded leaves, soil, platform shadow, 224 

and non-biological matter. Thirdly, reflectance (R) was calculated using the radiance signature 225 

from the Teflon white reference captured in each image against a lab calibrated Teflon standard 226 

using equation 1: 227 

𝑅 =
𝑆𝑠𝑢𝑛𝑙𝑖𝑡

𝑆𝑟𝑒𝑓
∗ 𝑅𝑟𝑒𝑓      (1) 228 

where Ssunlit is radiance from sunlit leaves, Sref is radiance from the Teflon panel, and Rref  is the 229 

percentage reflectance from lab calibrated Teflon standard. Reflectance from all sunlit pixels in 230 

each image was averaged per plot (Fig 2D). Spectral reflectance from both cameras in the same 231 

plot was joined to give reflectance for sunlit leaves per plot from 400-1800nm. Spectra were 232 

filtered with a polynomial order of 2 using 11 spectral measurements (nm) as the window length 233 

(Savitzky and Golay, 1964). Prior to PLSR analysis spectral bands below 450nm and above 234 
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1700nm were removed due to excess noise, and between 1313 and 1440nm were removed due to 235 

atmospheric water absorption (Hill and Jones, 2000; Serbin et al., 2015). 236 

Leaf spectral measurements  237 

Leaf-level spectral measurements were made using a spectroradiometer (Fieldspec4, 238 

Analytical Spectral Devices - ASD, Boulder, CO USA), with a leaf clip attached to a fiber optic 239 

cable. Leaf spectral reflectance was measured in situ from 400-2500nm with spectral resolution 240 

of 3nm in the visible and NIR (350-1000nm) and 8nm in shortwave-infrared (SWIR; 1000-241 

2500nm). The device houses a radiometrically calibrated light source which was standardized for 242 

relative reflectance prior to measurement using a Spectralon (Labsphere Inc., North Dutton, NH, 243 

USA) panel for white reference. In 2017 three leaves were sampled per plot and five per plot in 244 

2018. Measurements were made on the last fully expanded leaf, maintaining natural leaf 245 

orientation avoiding leaf midrib and edges. On a single leaf, six reflectance spectra were 246 

recorded using the leaf clip attachment in different regions of the same leaf. The six spectra for a 247 

single leaf were then averaged to give a mean spectrum per leaf. Each single measurement was 248 

the mean of 10 scans at a scan speed of 100ms. A spectral splice correction was applied to each 249 

spectrum to remove heat drift effects that may shift the sensors and align the VIS and SWIR to 250 

the NIR sensors within the Fieldspec4, using the FieldSpectra package in R according to Serbin 251 

et al. (2014). For quality control, spectra with abnormally high light levels at 450nm were 252 

excluded from analysis to ensure the leaf clip was properly fastened onto the leaf for each 253 

measurement. Spectral samples with a deviation from the mean reflectance greater than 2% were 254 

eliminated from analysis along with leaves with less than 4 viable spectra.  255 

Predictive PLSR models for all traits were built at both leaf and canopy levels for 256 

comparisons. For plot level models, the averaged ground truth subsamples (three leaf 257 

measurements in 2017 and five leaf measurements in 2018) from each plot were used as input for 258 

model build and validation. For leaf-level models, each individual leaf subsample measurement 259 

was included as a training data point without averaging per plot.  260 

 261 

PLSR analysis 262 

Predictive models were built for 8 traits, following PLS principles (Wold et al., 2001) 263 

according to the protocol of Serbin et al. (2014), modified for N. tabacum. Although in our 264 
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previous work (Fu et al., 2019) multiple stacked machine learning algorithms showed increased 265 

predictability (+5% for R2) of photosynthetic capacity (Vc,max), we used PLSR only in this work 266 

given the ability to derive scaling coefficients across the electromagnetic spectra from this 267 

technique, which allow inference of important contributing regions of the spectra for trait 268 

prediction. Unlike other predictive algorithms, PLSR coefficient loadings can be calculated to 269 

infer the physiological importance of specific spectral bands based on known vegetation spectral 270 

properties, and thus can be used to confirm the biological relevance of model builds between 271 

different devices and scales. 272 

 We used the open-source PLS package (Mevik and Wehrens 2007) in R (The R 273 

Foundation for Statistical Computing, Wien, Austria) to create a linear model of waveband 274 

coefficients that account for trait variation in reflectance spectra. The optimal number of 275 

components (latent variables: LV’s) for each model build was determined from the minimum 276 

root mean square error (RMSE) of the predicted residual sum of squares (PRESS) statistic 277 

(Esbensen et al., 2002),  using a leave-one-out cross validation approach that then makes a 278 

prediction for the out-of-sample observation (Siegmann and Jarmer, 2015). This prevents 279 

overfitting. Models were trained with data pairs of leaf or plot reflectance and a ground truth 280 

measurement, and cross validated with 1000 times random resampling to determine model 281 

stability. All model R2 presented herein are from this cross validation (CV). Loading weights 282 

indicate known spectral peaks or profiles for each model and are translated to the variable 283 

importance in projection (VIP), calculated as the weighted sum of squares of PLS weights 284 

(Farrés et al., 2015; Wold et al., 2001).  285 

Temperature corrections were not applied to bring photosynthetic parameters to a 286 

standard temperature prior to model fitting absolute plot temperature was not measured at the 287 

time of image capture. As such, all leaf and plot-level models include temperature variation. No 288 

outliers were removed from predictive models presented.  289 

 290 

Infrared Gas exchange measurements 291 

CO2 response 292 

Photosynthetic (A) vs. intercellular CO2 (Ci) response curves were collected within 30 293 

minutes of the leaf spectral measurements on the same last fully expanded leaves to determine 294 

https://www.sciencedirect.com/science/article/pii/S0034425719301804#bb0335


11 
 

Vc,max and J1800 for each leaf using a portable leaf gas exchange system with leaf cuvette (LI-295 

6800, LICOR Biosciences, Lincoln, NE, USA). Four machines were used by four operators to 296 

ensure unbiased sampling. Leaf temperature was determined as the mean of three measurements 297 

with a handheld IR gun (FLIR TG54, FLIR® Systems, Inc., Wilsonville, Oregon, USA). Leaf 298 

temperature of gas exchange was set to match this mean leaf temperature prior to each CO2 299 

response curve, and relative humidity set to 65%. PAR was set to 1800 µmol m-2 s-1, and CO2 300 

concentrations were adjusted stepwise over a range of 50 to 2000 µmol mol-1 in set increments as 301 

follows: 400, 200, 50, 100, 300, 400, 600, 900, 1200, 1500, 1800, 2000. Leaves were acclimated 302 

to chamber conditions for a minimum of 160s prior to each A/Ci curve with a minimum and 303 

maximum wait time of 160s and 200s, respectively, before each individual measurement of a 304 

response curve. Vc,max and J1800 were determined from these A/Ci curves according to the 305 

mechanistic model of photosynthesis (Farquhar et al. 1980) and analyzed using a curve fitting 306 

utility developed by Sharkey et al. (2007). While light response curves were carried out prior to 307 

analysis to determine saturating light intensity as ~1800 µmol m-2 s-1, we refer to maximum 308 

electron transport as J1800 rather than Jmax to avoid potential false claims of true maximal capacity 309 

(Sharkey, 2016). Mesophyll conductance (gm) was constrained according to values for tobacco at 310 

25°C reported previously with temperature dependency incorporated from the linear relationship 311 

of gm with temperature where y = -0.44 + 0.058x (Evans and Von Caemmerer 2013).  312 

 313 

Light response 314 

In experiment 2, to train the Pmax and фCO2 PLSR models, photosynthetic (A) vs. 315 

irradiance (Q) response curves were collected within 30 minutes of leaf spectral measurements, 316 

on the same leaves, with a portable leaf gas exchange system (LI-6800, LICOR Biosciences, 317 

Lincoln, NE, USA). All environmental settings matched those for A/Ci response curves 318 

(temperature to match ambient, RH 65%), but with CO2 set to 400 µmol mol-1. Irradiance 319 

concentrations were adjusted stepwise over a range of 2000 to 0 µmol m-2 s-1 in set increments as 320 

follows: 2000 1800, 1400, 1000, 600, 400, 200, 150, 100, 75, 50, 0. 321 

Leaf absorption for each genotype was determined using an integrating sphere (LI1800, 322 

LI-COR) connected to a spectrometer (USB-2000, Ocean Optics Inc, Dunedin, Florida, USA) as 323 

the mean absorptance of six last fully expanded leaves (Table S1) measured on the last day of 324 

experiment 2 (July 29, 2018). A/Q curves were then corrected for absorbed irradiance (Ia). фCO2 325 
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was calculated as the slope of the relationship between A and absorbed irradiance below 150 326 

µmol m-2 s-1. Pmax was calculated by a non-rectangular curve fit according to Thornley and 327 

Johnson (1990) as: 328 

 329 

𝑃𝑚𝑎𝑥 =
ф𝐼𝑎 + 𝑃𝑚𝑎𝑥 − √(ф𝐼𝑎 + 𝑃𝑚𝑎𝑥)2 − 4ф𝐼𝑎 𝜃𝑃𝑚𝑎𝑥

2𝜃
− 𝑅𝑑   330 

 331 

where Pmax is maximum light saturated photosynthesis, ф is quantum yield, Ia is absorbed 332 

irradiance, θ is the curvature factor, and Rd is dark respiration rate. 333 

 334 

Chlorophyll, Carbon and Nitrogen content 335 

In experiment 1, immediately following each leaf spectral measurement, a 2.01cm2 leaf 336 

disk was destructively harvested from each leaf using a cork borer, placed in 2 ml tubes and flash 337 

frozen in liquid nitrogen. To determine leaf chlorophyll (mg/m2) one leaf disc from each leaf was 338 

incubated in 96% (v/v) ethanol for 24 hours at 4 °C. The bleached material and ethanol were 339 

mixed (100 microliters of solution for each sample) and analyzed with a Synergy 2 340 

photospectrometer (BioTek Instruments, Inc, Winooski, VT, USA) at 470 nm, 649 nm, and 665 341 

nm (Lichtenthaler and Wellburn, 1983). To determine leaf carbon and nitrogen content (%), 342 

three more 2.01cm2 leaf disks were destructively harvested, and dried until constant mass and a 343 

subset of ground tissue of known mass (3 ± 0.5mg) was combusted with oxygen in an elemental 344 

analyzer (Costech 4010; Costech Analytical Technologies) and calibrated to %N and %C against 345 

an acetanilide standard curve.  346 

 347 

Results 348 

Physiological and spectral characteristics 349 

Our models captured a wide range of natural and genetically altered trait variation over 350 

consecutive growing seasons (2017 and 2018). For performance test one, averaged plot-level 351 

measurements of observed Vc,max, J1800, Chl, Chl a:b, N and C (Fig. S1A-F) include variation of 352 
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environmental and meteorological conditions (between 3 and 5 subsamples per plot), with Vc,max 353 

from 13.4 to 359.3 µmol m-2 s-1 (Fig. S1A), J1800 from 54.9 to 362.1 µmol m-2 s-1 (Fig S1B), Chl 354 

from 0.1 to 0.3mg/m2 (Fig. S1C), Chl a:b from 1.7 to 3.7 (Fig S1D), N from 2.53 to 8.4% (Fig 355 

S1E) and C from 36.2 to 47.4% (Fig. S1F). In performance test two, from light response curves 356 

measured between July 26th and July 29th in 2018, Pmax ranged between 4.1 and 77.7 µmol m-2 s-1 357 

(Fig. S1G) and фCO2 ranged between 0.024 and 0.064 µmol m-2 s-1 (Fig. S1H). Hyperspectral 358 

reflectance from all sunlit pixels per plot used to build PLSR models for all traits exhibit a peak 359 

centering at ~550 nm and high reflectivity in the NIR from 800-1300nm and a smaller peak 360 

developing from 1440-1800 nm, following the expected spectral profile pattern. However 361 

reflectance values are slightly lower than expected between 900-1250nm (Fig 3). 362 

 363 

Plot level PLSR predictions 364 

The corresponding reflectance spectrum from all sunlit pixels per plot (Fig. 3) paired with 365 

the observed, measured traits (Fig. S1), produced robust predictive plot level models for all traits 366 

other than фCO2. Mean spectra used for each model build in experiment 1 varied slightly, as 367 

spectra without a paired ‘ground truth’ sample for each trait were eliminated from model build 368 

datasets (Fig. 3). For example, in the SSuD genotype, J1800 could not be determined from gas 369 

exchange as the low Rubisco content meant this genotype was never electron transport limited 370 

but instead always Rubisco limited. Given that J1800 could not be calculated, the J1800 spectral 371 

sample size is reduced compared to the Vc,max model build (Figs 3A and B). Similarly, a small 372 

number of leaf disk samples for leaf chlorophyll, carbon and nitrogen content were lost in 373 

transportation, storage or during analysis creating slight variation in spectral sample used for Chl 374 

(Fig. 3C) and C and N (Fig. 3D) model builds. 375 

Using reflectance spectra from 450-900 nm only, collected with a single VNIR 376 

hyperspectral camera, Vc,max (R2 0.79, RMSE% 11.9), J1800 (R2 0.59, RMSE% 11.5), Chl (R2 377 

0.87, RMSE% 10) and Chl a:b (R2 0.63, RMSE% 18.5), and Pmax (R2 0.54, RMSE% 10.6) were 378 

highly predictable from PLS hyperspectral regression models (Fig. 4, Table 2). PLSR predictions 379 

performed moderately well for C (R2 0.47, RMSE% 18.7, Fig. 4E) and N (R2 0.49, RMSE% 380 

15.9%, Fig. 4F), but offered no predictability for фCO2 (R2 0.02, RMSE%, Fig. 4h) (Table 2). 381 
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When compared with the single camera models, PLSR models using both hyperspectral cameras 382 

(Fig. 5) had weakened predictive power (lower R2 and increased RMSE%) for all traits, except 383 

Chl a:b (Table 2). Using both cameras, Vc,max (R2 0.74, RMSE% 13.1, Fig. 5B) R2 decrease by 384 

5% and RMSE% increased by 1.9%. However, for Chl a:b predictability increases when both 385 

cameras are used (R2 0.77, RMSE% 14, Fig. 5d) where R2 increases by 14%, and RMSE% 386 

decreases by 4.5% (Table 2). 387 

Model loading weights indicate the importance of regions of the reflectance spectra for 388 

trait variation. For plot level PLSR predictions with a single VNIR camera (450-900nm), the 389 

region around 700 nm is important for all traits (Fig. 6). When translated to a VIP score for 390 

easier interpretation (Fig. 7), 700 nm is shown to be the most important region for Vc,max, J1800 391 

and Chl predictions. While ~700 nm is important for all other traits, for C and N, regions from 392 

500-650 nm, and ~820 and ~870 nm in the NIR also hold importance (Figs. 7C&D). For Chl a:b 393 

and Pmax, the entire NIR from 700-900 nm holds weight. When plot level model loadings (Fig. 6) 394 

and VIP scores (Fig. 7) are compared with those from leaf level PLSR models built using the 395 

same leaves that ground truth the plot level models, they generally follow the same response 396 

pattern for all traits, with the exception of VIP scores for Chl a:b (Fig. 7D) and фCO2 (Fig. 7H). 397 

Leaf level PLSR models 398 

When leaf level PLSR models were built to include different spectral ranges (500-900nm, 399 

500-1700nm and 500-2400nm) only Vc,max, N, and Pmax predictability showed minor 400 

improvement with greater spectral range (Table 3). The CV R2 for Vc,max remained the same 401 

when the model used reflectance from 500-1700nm, rather than 500-900nm, but there was a 2% 402 

increase when the full spectrum was used (500-2400nm). For Pmax  CV R2 increased by 7% when 403 

spectral bandwidth matched that of both hyperspectral cameras (500-1700nm) rather than with 404 

the single VNIR only (500-900nm), but no benefit was seen with the addition of the SWIR 405 

(1700-2400nm). Leaf N is the only trait for which improved predictability correlated with 406 

increased spectral range, with a 3% increase in CV R2 using 500-1700nm, and a further 7% 407 

increase using 500-2400nm (Table 2). Unlike the plot level фCO2 model, фCO2 was highly 408 

predictable from PLSR analysis of leaf-level spectral reflectance (CV R2 between 0.61 and 0.63, 409 

Table 3).  410 
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For PLSR models built at the leaf level for three different spectral ranges (500-900nm, 411 

500-1700nm, 500-2400nm, Fig 8A-H) VIP scores in the VNIR from 400-800nm were larger 412 

than those in the NIR and SWIR from 800-2400nm, for all traits other than leaf C and N 413 

contents. For C (Fig 8e) and N (Fig 8f), VIP peaks at ~1400nm and 1900nm suggest these 414 

regions also hold high importance for predictability. Comparing VIP scores for models built with 415 

a single VNIR camera (Pika II, 450-900nm) showed greater variability than those for models 416 

built with two cameras (Pika II and Pika NIR, Figs 8I-P). While all models had high VIP scores 417 

between 450-900nm, and C and N followed a similar pattern seen at the leaf level (Figs 9M-N), 418 

Vcmax and J1800 also had VIP peaks around 1100nm and 1700nm (Figs 8I-J). VIP scores for plot-419 

level фCO2 models were not shown due to the lack of predictability of this parameter with 420 

hyperspectral imaging in this study.  421 

 422 

Discussion 423 

Results show that photosynthetic capacity (Vc,max and J1800), maximum light saturated 424 

photosynthesis (Pmax), and associated photosynthetic pigment contents (C, N, Chl, and Chl a:b) 425 

can be predicted using high-throughput proximal plot level hyperspectral imaging. PLSR 426 

analysis of reflectance spectra is now well established as a robust tool for estimating 427 

photosynthetic performance at the leaf level (Ainsworth et al., 2014; Serbin et al., 2012; Silva-428 

Perez et al., 2017; Yendrek et al., 2016), and the technique holds integrity when used on plants 429 

with altered photosynthetic pathways (Meacham-Hensold et al., 2019). At a broader spatio-430 

temporal scale, data collected with the Airbourne Visisble Infrared Imaging spectrometer 431 

(AVIRIS) has been used with PLSR analysis of reflectance spectra to successfully predict 432 

photosynthetic capacity (Vc,max) at the agroecosystem canopy level, lending lessons for 433 

ecosystem and earth system models (Serbin et al., 2015). The results here offer a tool to measure 434 

between these contrasting scales to derive photosynthetic capacity as a crop breeding selection 435 

tool. The predictive models presented in this study show the utility of hyperspectral imaging as a 436 

tool for plot-level phenotyping for superior photosynthetic performance in large scale field trials, 437 

offering potential to screen hundreds of accessions in a single day.  438 

Spectral compositional features 439 
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 Electromagnetic energy in the visible range provides the energy for photosynthesis, and 440 

absorption in the visible region specifically between 660-700 nm is of high importance for 441 

photosynthetic predictions from reflectance spectra (Fu et al., 2019; Meacham-Hensold et al., 442 

2019; Serbin et al., 2012; Silva-Perez et al., 2017). Similarly, the region of transition from low 443 

reflectivity in the visible range to higher in the NIR (~750nm), termed ‘red-edge’, has been 444 

utilized to predict Vc,max (Dillen et al., 2012) and is also heavily weighted in previous PLSR 445 

predictive model loadings (Meacham-Hensold et al., 2019; Silva-Perez et al., 2017; Yendrek et 446 

al., 2016). These relationships are underpinned by the importance of chlorophyll, nitrogen and 447 

Rubisco in photosynthetic processes (Evans, 1989) and the dominating influence of these 448 

pigments on reflectance spectra from 500-800nm (Curran, 1989; Elvidge, 1990; Ustin et al., 449 

2009). Variable importance in projection (VIP) scores quantify contribution of each variable 450 

(spectral bands) to overall variance, and in this study when models were built using data from a 451 

single VNIR camera (450-900nm), the greatest peak in VIP scores are also in the chlorophyll 452 

absorption bands and the red-edge regions for Vc,max and J1800, Pmax,Chl and N (Fig. 7) fitting with 453 

previous spectral reflectance compositional observations (Farrés et al., 2015).  454 

Previous leaf-level studies show that some regions of the lower energy NIR, particularly 455 

~1400 nm are also important for photosynthetic PLSR predictions (Yendrek et al., 2016). 456 

However, in this study plot level models built using reflectance in the VNIR range only (450-457 

900nm) give greater predictability than those using reflectance from a greater spectral range 458 

(450-1700 nm) (Figs. 4 and 5, Table 3). This was unexpected and may be the result of 459 

compounding factors. In our plot-level analysis using both cameras (450-1700nm), we removed 460 

reflectance between 1313-1440nm given convolution of reflectance spectra in that region from 461 

atmospheric water absorption properties (Hill and Jones, 2000; Serbin et al., 2015), where 462 

removal of these bands is unnecessary when using a leaf clip with an artificial light source. Thus 463 

it follows, with the absence of reflectance at ~1400nm, that the spectral region detected by the 464 

single VNIR camera (400-900nm) captures the most important regions for photosynthetic 465 

predictions. This offers one possible explanation for the strength of PLSR predictions for all 466 

parameters in this study from the single VNIR camera (Fig. 4). In addition, when reflectance 467 

spectra from both cameras (450-1700nm) were used to build predictive models, VIP scores for 468 

Chl (Fig 8K), Chl a:b (Fig 8L), and Pmax (Fig 8P), show reflectance from the NIR above 900nm 469 

holds little to no importance (Fig 8).This is not surprising given the absorption of chlorophyll 470 
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occurs in the visible range (Ustin et al., 2009) and that Pmax should be highly related to pigment 471 

and pigment pool distributions.  However, for Vc,max (Fig 8I), J1800 (Fig 8J), C (Fig 8M) and N 472 

(Fig 8N), while VIP peaks between 400-900 nm dominate, peaks at ~1150 nm and 1750 nm are 473 

present suggesting secondary importance of these regions. Despite the known spectral properties 474 

for N and C in these regions (Asner and Martin, 2008; Curran, 1989), and similarly high VIP 475 

scores around ~1100 nm in predictions of Vc,max from airborne spectroscopy (Serbin et al., 2015), 476 

models for these three parameters built with reflectance from both cameras (450-1700 nm) rather 477 

than just the VNIR (450-900 nm) are weaker (Fig 4 and 5, Table 2).  478 

Chl a:b is the only trait for which predictions improve when two cameras (450-1700nm) 479 

are used for the model build rather than the single VNIR (450-900nm) camera (Figs 4D and 5D). 480 

With known chlorophyll absorption dominant only in the visible range, supported by the low 481 

loading values for the leaf level Chl a:b models above 900nm (Fig 8D) this raises questions to 482 

the cause of improved predictability when adding reflectance spectra above 900nm. This is likely 483 

due to the dilution effect for spectral regions of physiological importance when a ratio of two 484 

physiological traits is presented. While the Chl a:b model is unlikely overfit given the reliance 485 

on the PRESS statistic in latent variable number selection, physiological importance is reduced 486 

allowing ‘statistical’ rather than ‘trait’ training. Thus care should be taken to eliminate spectral 487 

regions shown to hold little weight for the original trait pair when using this PLSR technique to 488 

predict ratio values.  489 

Leaf level comparisons 490 

In attempts to understand the relationship between spectral range and predictability 491 

power of PLSR models, we built leaf-level models for all of the plot level ground truth material 492 

measured in this study at three different spectral ranges (Table 3). For each trait, we built models 493 

first using reflectance spectra measured with the Fieldspec4 from 500-900 nm, second from 500-494 

1700 nm, and third from 500-2400 nm. At the leaf level, with a single device measuring from 495 

400-2500 nm and an artificial light source, the only trait prediction that improved with greater 496 

spectral range inclusion was leaf N (500-900 nm  CV R2 = 0.66, 500-1700 nm  CV R2 = 0.69, 497 

500-2400 nm  CV R2 = 0.76, Table 3). The predictability of all other parameters was not 498 

increased with increased spectral range. This may be due to the almost equal importance of VIP 499 

peaks around 1400 and 1900 nm when compared with the chlorophyll and red-edge regions from 500 
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500-800 nm for nitrogen content (Fig 8F). In contrast, at the leaf level for all other predicted 501 

traits in this study, the highest VIP scores occur between 500-800 nm with only small peaks in 502 

the NIR and SWIR (Fig 8A-H) which may explain the lack of correlation between PLSR 503 

prediction power and spectral range included in the leaf level model builds for Vc,max , J1800, Chl, 504 

Chl a:b, C, Pmax and фCO2. While фCO2 is not predictable with PLSR analysis at the plot level 505 

(Fig 4H and 5H), it is highly predictable at the leaf level (Table 3 and Fig S2), highlighting the 506 

need for high variation in observed trait values, to cover greater ‘trait space’ (Ely et al., 2019) for 507 

building robust models (Meacham-Hensold et al., 2019). Where observed leaf traits are averaged 508 

(between 3 and 5 subsamples) at the plot level for фCO2, observed measurement repetitions are 509 

thus reduced, shrinking the trait space and consequently model prediction strength. 510 

 Vegetative structural reflective properties and the comparative loading and VIP scores for 511 

leaf and plot-level models from 450-900 nm (Figs. 6 and 7) support the strength of plot-level 512 

models built with a single VNIR camera (Fig. 4). Loadings and VIP scores and may support a 513 

lack of improved predictability when models for the same traits are built with reflectance from 514 

two cameras that span a greater spectral range (400-1700 nm), but they do not explain the 515 

apparent reduction in predictive power (Table 3). N and C predictions in particular, should 516 

perhaps be improved when lower energy regions of the NIR are included in analysis with both 517 

cameras, due to the known absorption features properties of C and N in the NIR (Curran, 1989), 518 

and the strong VIP peaks at ~1100 nm and 1700 nm (Fig 8M-N). This unexpected reduced 519 

model strength with increased spectral range is likely due to instrumentation limitations. 520 

Hyperspectral imaging equipment for phenotyping in field trials is limited. We used two 521 

hyperspectral cameras, with different spectral resolution (Pika II: 2.1nm, Pika NIR 4.9 nm), 522 

different spatial resolution (Pika II: 7.4 µm pixel size, Pika NIR: 30 µm pixel size) and different 523 

signal to noise ratios (Pika II:198, Pika NIR: 1885), given the lack of affordability and 524 

availability of a single sensor to cover the full electromagnetic spectra. The NIR camera has 525 

greater intrinsic error.  526 

Improving plot level hyperspectral predictions 527 

 The quality of the signal from the Pika NIR (900-1800nm) camera presents a key 528 

challenge throughout this work. Model predictions using two cameras are likely weakened due to 529 

technical limitations rather than lack of importance of particular NIR spectral regions for 530 
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physiological trait prediction. The reflectance profile from the Pika NIR imaging system ~900-531 

1250nm is lower than expected when compared with reflectance measured with a leaf clip. 532 

Working with spectral reflectance measured by imaging systems using sunlight rather than a leaf 533 

clip with an artificial light sourse presents challenges with light having been influenced by the 534 

atmosphere before reaching the leaf and again after reflection before detection by a sensor.  This 535 

results in a more complex signal compared with reflectance from integrated full-spectrum leaf-536 

level devices. For example, quantification of leaf angles, removal of background noise from 537 

scattered reflectance at lower canopy levels, removal of background noise from soil (Gao et al., 538 

2000; Verhoef, 1984) and correction for plot temperature at the time of image capture (Serbin et 539 

al., 2015) could all improve plot level model strength. Our plot level reflectance spectra is also 540 

lower  between 900-1250nm than that from aircraft and other proximal hyperspectral imagers . 541 

Proximal hyperspectral imagery usually presents data captured from nadir sensors rather than 542 

pushbroom scanning platforms. At the time of our data collection, for mounting approximately a 543 

meter above target vegetation on a proximal sensing pushcart, pushbroom line sensors offered 544 

the greatest spatial resolution and affordability.  However, the camera angle rotion increases 545 

directional anistropy and coupled with light scattering from background vegetation increases our 546 

signal to noise ratio. While our automated analysis pipeline (Fig 3) very accurately accounts for 547 

radiance at time of image capture using a Teflon reference panel for accurate conversion to 548 

reflectance (Fig 2B), the signal could likely be improved with an updated nadir scanner and 549 

future incorporation of more complex radiative transfer modelling to account for background 550 

scattering. Leaf level VIP scores show less variation than plot level scores (Fig. 8) particularly in 551 

the NIR.While VIP scores are higher at the plot level, peaks do follow the same trends thus the 552 

variation is likely indicative of scattering detected by the NIR hyperspectral camera and sensor 553 

noise rather than a need to question the true importance of these regions for prediction of a given 554 

trait.  555 

The variation in plot-level ground truthing also presents a known challenge as plot level 556 

estimations are trained with leaf-level measurements. While currently this is the only realistic 557 

ground truth method for canopy photosynthetic measurements, it is not ideal given the known 558 

limitations of applying leaf-level measurements to canopy estimations (Amthor, 1994; Baldocchi 559 

and Harley, 1995; De Pury and Farquhar, 1997; Wu et al., 2016) and the known variation in 560 

photosynthetic rates and capacities within crop canopies of the same germplasm and even within 561 
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plant crowns at the highest levels of a canopy due to variation in light environment (Niinemets, 562 

2007). More robust plot level models could be trained with a greater number of ground truth 563 

samples, but the time taken to obtain gas exchange measurements of photosynthetic capacity is a 564 

limitation. These challenges persist for the high throughput phenotyping and the remote sensing 565 

community and as equipment develops and sensor integration capabilities advance, predictive 566 

models of the nature presented in this study will likely improve. Despite these challenges, this 567 

study proposes robust plot level predictions of key photosynthetic parameters and structural 568 

traits, that are the focus of current research efforts to increase crop yields for global food security 569 

(Evans, 2013; Ort et al., 2015). 570 

The challenges facing agricultural production in the face of resource limitation and 571 

changing climate necessitates methods for rapid screening of large field trials for productivity 572 

and performance. The results from the automated hyperspectral image analysis pipeline we 573 

present synthesizes high resolution plot-level information to a single sunlit plot leaf reflectance 574 

spectra for use in a variety of applications. Photosynthetic predictions from PLSR analysis of this 575 

output offers a tool for rapid field phenotyping for photosynthetic performance. Such synthesis 576 

of large spatial and temporal datasets with user-friendly analysis pipelines that derive 577 

biologically relevant outcomes will be increasingly important in the fight for increased global 578 

food production. The success of predictive models with a single VNIR hyperspectral camera 579 

widens the relevance and potential application of this technique for greater utility, as reduced 580 

spectral bandwidth equates to reduced cost of acquisition and operation of hyperspectral imaging 581 

systems.  582 

 583 

Supplementary data description 584 

Dataset 1 – Spectrum collected with hyperspectral imaging cameras used for model builds for 585 

each trait as presented in Fig. 3. Smoothed mean, min, max, and high and low 95% confidence 586 

intervals from all spectral data are presented. 587 

Dataset 2 – PLSR model predictions from a single VNIR hyperspectral camera (450-900nm), as 588 

shown in Fig. 4. Measured data are the average of three leaves per plot. 589 
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Dataset 3 – PLSR model predictions from two hyperspectral cameras (450-1800nm), as shown in 590 

Fig. 5. Measured data are the average of three leaves per plot. 591 
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Tables 

Table 1. Nicotiana tabacum genotypes used in this study and description of transgenic modification, with reference 

for detailed description of transformation. 

Genotype Year(s) 

grown 

Transgene Expected transgene 

function 

Petite 

Havana 

2017 & 

2018 

None (WT) n/a 

Samsun 2017 & 

2018 

None (WT) n/a 

Mammoth 2017 None (WT) n/a 

Single R 

antisense 

2017 Rubisco small subunit antisense from Nicotiana benthamiana. 

40% of WT Rubisco, background: W38 (Hudson et al., 1992) 

Reduced photosynthetic 

capacity 

Double R 

antisense 

2017 & 

2018 

Rubisco small subunit antisense from Nicotiana benthamiana. 

10% of WT Rubisco, background: W38 (Hudson et al., 1992) 

Reduced photosynthetic 

capacity 

Bypass AP3 2017 & 

2018 

Two transgenic genes expressing the enzyme Glycolate 

dehydrogenase and Malate synthase as an alternative 

photorespiratory pathway, background: Petite Havana (South et 

al., 2019) 

Increased photosynthetic 

capacity, by reduction of 

energy loss associated 

with photorespiration. 

Bypass 

AP3/RNAi 

2018 Same as Bypass AP3 but with RNAi to down regulate native 

chloroplast glycolate transport, background: Petite Havana 

(South et al., 2019). 

Increased photosynthetic 

capacity, by reduction of 

energy loss associated 

with photorespiration. 

PSBS-43 2017& 

2018 

Increased PsbS mRNA levels from transformation with 

Nicotiana benthamiana Psbs coding sequence and 35S 

promoter, background: Petite Havana (Głowacka et al., 2018; 

Głowacka et al., 2016) 

Increased photosynthetic 

capacity, due to increase 

in electron transport 

metabolite pools. 

Psbs-4 2017 & 

2018 

Decreased PsbS mRNA levels from transformation with 

Nicotiana benthamiana Psbs coding sequence and 35S 

promoter, background: Petite Havana (Głowacka et al, 2018; 

Głowacka et al., 2016) 

Reduced photosynthetic 

capacity, due to 

decreased electron 

transport metabolite 

pools. 

VPZ-23 2017 & 

2018 

Three transgenes from Arabidopsis thaliana, expressing 

violaxanthin de-epoxidase (VDE), zeaxanthin epoxidase (ZEP) 

and photosystemII subunit S (psbS), background: Petite 

Havana (Kromdijk et al., 2016) 

Increased photosynthetic 

capacity, due to 

overexpressed 

xanthophyll cycle 

enzymes. 

LMD 2018 Transgene from Arabidopsis thaliana expressing plastid 

division protein (FtsZ), background: Petite Havana. 

Low mesophyll density: 

Increased chloroplast size 

and decreased chloroplast 

number. 

LCD 2018 Decreased mRNA levels of low cell density (LCD1) 

homologue of N. tabacum by RNAi, background: Petite 

Havana. 

Low mesophyll cell 

density and lowered 

photosynthetic capacity 
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Table 2. PLSR stability statistics for models built with a single camera (450-900nm), and for models built 

with both cameras (450-1700nm).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

450-900nm (PikaII) 450-1700nm (Pika II + Pika NIR)

Trait Train 
r2

CV r2 RMSE 
(trait 
unit)

RMSE 
%

Bias 
(trait 
unit)

Train 
r2

CV r2 RMSE 
(trait 
unit)

RMSE 
%

Bias 
(trait 
unit)

Change 
in CV r2

(%)

Change 
in RMSE 

(%)

Vc,max (µmol m-2 s-1) 0.91 0.79 38.7 11.2 -0.49 0.96 0.74 45.3 13.1 1.64 -5% +1.9

J1800 (µmol m-2 s-1) 0.88 0.59 35.3 11.5 -0.39 0.95 0.52 41.1 13.4 3.42 -7% +1.9

Chl (mg/m2) 0.98 0.87 0.02 10 0.002 0.98 0.55 0.03 15 -0.0008 -32% +5

Chl a:b 0.95 0.63 0.37 18.5 0.103 0.97 0.77 0.28 14 0.024 +15% -4.5

C  (%) 0.9 0.47 3.1 27.6 0.23 0.91 0.28 2.6 23.1 0.15 -19% +4.4

N  (%) 0.85 0.49 0.93 15.5 -0.032 0.95 0.40 1 17 -0.007 -9% +1.2

Pmax (µmol m-2 s-1) 0.82 0.54 7.77 1.06 0.12 0.91 0.50 8.52 11.6 0.75 -4% +1

фCO2 (quanta/A µmol m-2 s-1) 0.35 0.02 3.33 8325 0.014 0.50 0.01 3.79 9475 -0.099 -0.1% +1150
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Table 3.  PLSR models built at leaf-level for all traits using three different spectral ranges (500-900nm, 

500-1700nm and 500-2400nm).  

 

 

 

 

 

 

Spectral 
range (nm)

R2 Train R2 CV
RMSECV 

(trait unit)
RMSE (%)

Model bias 
(trait unit)

Latent 

variable 
no.

Vcmax (µmol m-2 s-1)

500-900 0.71 0.67 48.33 13.98 0.066 7

500-1700 0.75 0.67 45.21 13.08 0.497 10

500-2400 0.79 0.69 41.67 12.06 0.646 11

J1800 (µmol m-2 s-1)

500-900 0.59 0.40 38.58 13.38 1.211 11

500-1700 0.58 0.39 39.15 13.57 0.454 11

500-2400 0.53 0.40 41.38 14.35 0.017 8

Chl content (mg/m2)

500-900 0.82 0.78 0.02 8.82 0.00007 10

500-1700 0.78 0.74 0.03 9.76 0.00003 6

500-2400 0.80 0.77 0.03 9.32 0.00001 6

Chl a:b

500-900 0.87 0.78 0.25 8.56 -0.003 14

500-1700 0.86 0.79 0.25 8.84 0.0001 15

500-2400 0.85 0.76 0.50 7.50 0.005 13

C content (%)

500-900 0.86 0.74 0.96 7.85 -0.011 15

500-1700 0.84 0.76 1.01 8.30 0.007 15

500-2400 0.86 0.75 0.95 7.84 0.016 15

N content (%)

500-900 0.80 0.66 0.57 8.50 0.011 15

500-1700 0.80 0.69 0.58 8.65 0.007 15

500-2400 0.85 0.76 0.50 7.50 0.005 15

Pmax (µmol m-2 s-1)

500-900 0.63 0.50 8.04 10.92 0.12 9

500-1700 0.71 0.57 7.15 9.71 -0.04 13

500-2400 0.72 0.56 7.04 9.55 0.04 13

фCO2 (quanta/A µmol m-2 s-1)

500-900 0.76 0.62 0.00 8.82 0.000004 11

500-1700 0.77 0.63 0.00 8.63 -0.000001 12

500-2400 0.73 0.61 0.00 9.24 0.000044 9
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Figure Legends 

Fig. 1, A ground-based phenotyping platform housing two hyperspectral cameras and RGB 

camera (A), with moveable white reflectance panel mounted at the top of canopy level (B).  

Fig. 2, Example of the hyperspectral image analysis processing workflow. Images are captured in 

raw data mode (digital numbers) and represented as an RBG image (A). Pixels are separated into 

categories using K means clustering (B) to extract all sunlit leaf pixels, and converted to 

reflectance (C) from raw data in digital numbers (D). Mean value and standard deviation of all 

sunlit leaf reflectance pixels are computed (D).  

Fig. 3, Mean plot level sunlit leaf reflectance for all spectrum included in plot-level PLSR 

models, from performance test 1, Vc,max (A), J1800 (B), Chl and Chl a:b (C), and C and N content 

(D) and performance test 2, Pmax and фCO2 (E). Spectrum are obtained from our automated 

image analysis pipeline with atmospheric water absorption band 1313-1440nm removed, and 

displayed with the min and max from all data and 95% confidence intervals. n = the number of 

plots the spectrum represent. Sample size for each trait varies dependent on the amount of viable 

groundtruth samples taken for each trait.    

Fig. 4, Comparison between observed photosynthetic parameters and those predicted from PLS 

regression of plot-level sunlit leaf reflectance using a single VNIR hyperspectral camera (450-

900nm) for Vc,max (A), J1800 (B), Chl (C), Chl a:b (D), C (E) and N (F) in performance test 1, and 

Pmax (G) and ɸCO2 (H) in performance test 2. Observed parameters are the mean of 3-5 leaf-

level ground truth measurements and predictions are the mean of 1000 times cross-validation of 

the model. 

Fig. 5, Comparison between observed photosynthetic parameters and those predicted from PLS 

regression of plot-level sunlit leaf reflectance using both VNIR hyperspectral camera (450-

900nm) and NIR/SWIR (900-1700nm) cameras for Vc,max (A), J1800 (B), Chl (C), Chl a:b (D), C 

(E) and N (F) in performance test 1, and Pmax (G) and фCO2 (H) in performance test 2. Observed 

parameters are the mean of 3-5 leaf-level ground truth measurements and predictions are the 

mean of 1000 times cross-validation of the model. 

Fig. 6, Model loadings from leaf level and plot level PLSR models from 450-900nm for all traits: 

Vc,max (A), J1800 (B), Chl (C), Chl a:b (D), C (E) and N (F) in performance test 1, and Pmax (G) 

and фCO2 (H) in performance test 2. 

Fig. 7, Comparison of variable importance projection (VIP) scores from leaf level and plot level 

PLSR models from 450-900nm for all traits: Vc,max (A), J1800 (B), Chl (C), Chl a:b (D), C (E) and 

N (F) in performance test 1, and Pmax (G) and фCO2 (H) in performance test 2. 

Fig. 8, PLSR model variable importance projection (VIP) scores for models built with different 

spectral ranges for leaf level and for Vc,max (A), J1800 (B), Chl (C), Chl a:b (D), C (E) and N (F) 

Pmax (G) and фCO2 (H), and at the plot level for the same traits respectively (I-P). VIP scores for 

plot-level фCO2 models are not shown due to the lack of predictability of this parameter at the 

plot level.  
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Fig 6 
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Fig 7 
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Fig 8 
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